smartDNA

smartDNA

Your Genes (DNA) Can Affect Your Health

Have you ever tried a diet with a friend or partner, be it low-carb, low-fat, vegan, paleo, keto, whatever.  You’ve both done everything exactly the same from what you eat to how you’re exercising. But you don’t seem to get the same results? This is because you each have different DNA and, genetically, the regime may or may not suit each individual.

Wouldn’t it be useful to know if you have an inability to absorb certain vitamins & minerals or not detoxify or methylate efficiently so that you can ensure your diet and supplement regime is appropriate? Perhaps you’d like to better understand whether you have a sensitivity to sodium, alcohol, caffeine or lactose. Or, maybe your concern is centred around heart health, lipid metabolism, diabetes risk and cancer.

This new field of personalised health is called Nutrigenomics. With a simple saliva (spit) sample we’re now able to map over 100 different genetic changes (SNPs, single nucleotide polymorphisms) specific to health, metabolism and fitness, helping you to optimise your lifestyle to get the best out of your genetics!

Are you ready to understand your DNA?

As a smartDNA Practitioner I facilitate this test for you and take you through your results one-on-one directing how you can best optimise your lifestyle for your genetics with comprehensive action steps.

Your Genomic Wellness Test includes:

  • Saliva sample test kit right (shipped directly to you for you to submit in the comfort of your own home).
  • >100 page report detailing your health-related SNPs and advisable action steps to best optimise your health.
  • A 2 hour, one-on-one consultation explaining your report and advised action steps.

Which genes does the test screen for?

The smartDNA Genomic Wellness test screens for the following gene SNPs (single nucleotide polymorphisms), information written by smartDNA.

You can also download the brochure here.

Lipid Metabolism

The lipid panel is main hub for a heart health based diet. In particular Apolipoprotein E (APOE) genotyping maybe ordered by the practitioner when a patient has significantly elevated cholesterol and triglyceride levels that do not respond to dietary, exercise and lifestyle changes. A number of genetic variants have been identified that negatively impact the concentration of plasma lipids in response to the amount and type of fat consumed; total cholesterol, HDL-C, LDL-C and triglyceride levels. These genetic variants analysed include APOA1, LPL, ABCA1, CETP, LIPC, APOB, APOB100, APOCIII, APOA5,LDL-R, eNOS3, FABP2 and LPA.The application and clinical benefit is for those patients with disorders of lipid metabolisms. The patient has an active role in lifestyle changes with specific nutrition based therapy. The selection of other genes involved in lipid metabolism is targeted to genes involved in HDL-C level, fat absorption, fat transport and the conversion and degradation of fat. Dyslipidemia can have various genetic causes which are influenced by nutrition, alcohol, smoking and sex-specific effects.

Metabolic Syndrome and Diabetes

This is a genetic risk assessment for Type II Diabetes and Metabolic Syndrome (MetS). Diabetes is one of the major diseases of this century and genetics, lifestyle and nutrition are all equally important considerations. The long-chain acyl CoA synthetase 1 (ACSL1) and acetyl-CoA carboxylase (ACC2) play a key role in fatty acid synthesis and oxidation.  Disturbance of these pathways is associated with impaired insulin responsiveness and metabolic syndrome (MetS). Moreover the ACSL1 and ACC2 gene polymorphisms are modulated by dietary fat intake. The individual being tested is genetically predisposed to normal, moderate or high level of Diabetes risk. Genetic variations detected in the TCF7L2,WFS1 and SLC30A8 genes have been reported to play a role in insulin function. The, FTO, G6PC2 and PPARG genes will indicate an increased likelihood of developing type 2 diabetes due to a higher BMI (FTO), reduced control of blood glucose levels (PPARG andG6PC2) or reduced pancreatic beta cell function (SLC30A8).

Inflammation

Inflammation has a key role in chronic diseases including diabetes, osteoporosis, obesity, aging and cardiovascular disease. Susceptibility to increased inflammatory response is genetically determined. Common variants found in the TNFA,IL6 and CRP genes are analysed.

Sodium Sensitivity

High blood pressure or hypertension is the leading cause of strokes and major risk factor for heart attacks. Two gene variants are analysed ACE and AGT which have been reported to be associated with sodium sensitivity.An individual with a “salt sensitive” genotype may result in higher plasma angiotensinogen levels and ultimately higher blood pressure leading to an increased risk of hypertension.

 Co-enzyme Q10

A variant in the NQO1 gene is associated with reduced NQO1 enzymatic activity reducing the one electron reduction of quinones that results in the production of radical species.

Omega-3 and Omega-6

A variant in the FADS1 gene is associated with decreased blood levels of Arachidonic Acid (AA) and Eicosapentanoic acid (EPA). AA is a long chain omega-6 acid and EPA is a long chain omega-3 acid. Individuals with this genotype may have reduced blood levels of omega 3 and omega 6 fatty acids.

Vitamins

There are genetic makers associated with lower levels of vitamins B2, B6, B12, C, D and E. Variants in the MTHFR, NBPF3, FUT2, GSTT1, GSTM1, SLC23A1, INTERGENIC, GC, DHCR7 and CYP2R1genes are markers which may indicate lower levels of dietary vitamins.

Methylation – Folate and Cofactors

The ability to reduce homocysteine to cysteine and methionine is influenced by genetics, environmental factors especially vitamins B2, B6, B9 and B12 as well certain medications and lifestyle factors. Variants in the MTHFR, MTRR, MTR, CBS, TCN2 and SLC19A1 genes are associated with elevated homocysteine levels and an increased risk of vascular disease including peripheral and cerebral vascular disease, coronary artery disease and thrombosis.

Choline

Genetic variation in the MTHFD1 gene is associated with an increased risk of developing choline-deficiency induced organ dysfunction and/or having a child with a neural tube defect. This is due to the increased demand for choline as a methyl group donor. Low dietary choline has been reported to contribute to high homocysteine levels.

Caffeine Metabolism, Coeliac Disease, Lactose Intolerance

Oxidative Stress

Oxidative stress is a major cause of premature ageing and cell death. The major enzymes involved in anti-oxidative defence SOD2, GPX1 and CAT are assessed.

Phase I and Phase II Detoxification

Drugs (including caffeine), metals and hormones are transformed in the Phase I process into reactive bioactive compounds. The enzymes CYP1B1, CYP1A1 and COMT are involved in this process. Assessment of the enzyme function is useful in relation to the processing of compounds such as xeno-estrogens.  Metabolites from Phase I detoxification are transformed into water soluble compounds which are then excreted in urine. Down regulation of Phase II detoxification may lead to an accumulation of toxic metabolites. The glutathione transferase enzymes GSTT1, GSTM1 and GSTP1 are involved in this process.

Weight Management

This section of the report includes genetic variants whose activities are modified by nutrition and exercise such as saturated fat (APOA2) and monounsaturated fat (APOA5 and PPARG), predisposition to higher total cholesterol (NPY) or attenuated improvement in HDL-C level (PPARD). Genetic information in relation to satiety or feelings of fullness (FTO), Bitter taste perception (TAS2R38) which may increase salty food intake,resistance to weight loss (ADRB2 and ADRB3), increased snacking (MC4R), circulating levels of adiponectin and weight regain (ADIPOQ), increased consumption of sugary foods (SLCA2) and food addiction (DRD2), increased metabolic rate (LEPR) and exercise in relation to weight loss maintenance and benefits of weight loss in relation to protein intake (FTO).

Physiogenomics

Physiogenomics integrates genotypes, phenotypes and functional variability amongst individuals. A phenotype is a measurable physiological, morphological, biological, biochemical or clinical characteristic. Genotype refers the genetic composition of that individual. The section of the report covers increased risk of obesity, depression and episodic memory (BDNF), blood pressure response to exercise (EDN1), KIBRA and working memory, HPA axis stress responses in particular elevated ACTH and cortisol levels (TH and MR), seasonal variation in sleep, mood, appetite, social activity (NPAS and CLOCK), increased plasma ghrelin level and weight gain (CLOCK) and exercise in relation to reducing injury and developing a personalised exercise and recovery plan (COL1A1, VDR (FOK1), ACTN3, HIF1, MCT1, VEGFR2,eNOS3 and ACE).